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Abstract

For a given source and lens pair, there is a thin on-axis tube volume behind

the lens in which the radiation ux is greatly increased due to gravitational

lensing. Any objects (such as dust grains) which pass through such a thin

tube will experience strong bursts of radiation, i.e., Extreme Gravitational

Lensing Events (EGLE). We study the physics and statistics of EGLE for the

case in which �nite source size is more important than shear. EGLE may have

signi�cant astrophysical e�ects.
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1. Introduction

Gravitational lensing has been studied almost exclusively in the context of direct

observation of lensed sources from the Earth or spacecraft (Schneider et al. 1992). However,

every astrophysical object receives the light from sources lensed by intervening massive

objects. The most powerful gravitational lensing events occur when the source, lens, and

a target object are nearly on-axis. Such events are extreme in magni�cation, and rare in

occurrence for any given target. By considering arbitrarily located targets, we can study the

statistics of Extreme Gravitational Lensing Events (EGLE). EGLE can have a signi�cant

e�ect on certain objects, especially fragile components of the interstella medium, such as

molecules or dust grains.

For a pair of source and lens, an EGLE occurs when a moving target object crosses

the source-lens line behind the lens. The maximum magni�cation of the source seen by the

target can be extremely large, limited only by the source size and the shear on the lens. As

the target moves away from the line connecting the source and the lens, the magni�cation

of the source decreases. The duration of an EGLE depends on the velocity of the target

and the size of the high ux region. A slowly moving target in the neighborhood of a pair

of small-size source and slightly-sheared lens can experience a strong burst of radiation due

to the lensing of the source, which may be su�cient to a�ect the target's properties.

If the target moves a distance d away from the line connecting the source and the lens,

it is equivalent to the source moving an angular distance of y from the optical axis (the line

connecting the lens and the target). Measuring y in units of the angular Einstein radius,

we have

y '
�
Dds

Dd

�
d

Ds�E
; (1)

where Dds, Ds, and Dd are angular diameter distances between the lens and source, target

and source, target and lens respectively. �E =

q
2RSDds=(DdDs) is the angular Einstein
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radius. RS = 2GM is the Schwartzschild radius of the lens with mass M . Eq.(1) is valid for

su�ciently distant lens or source.

We can write �E as

�E = 10
�6 �

vuut M

5� 10
6M�

! �
1Mpc

Dd

�
Dds

Ds

: (2)

The dimensionless radius of a source with physical radius � is de�ned as

R � �

Ds�E
=

�
�

3:09� 10
18
cm

�  
10
�6

�E

! �
1Mpc

Ds

�
: (3)

For a given pair of lens and source, the shear  on the lens due to other lensing objects

near the line-of-sight is the same order of magnitude as the optical depth for microlensing,

� , the probability that the source is lensed. We �nd

 =
p
2 �

�
3

2

�
� ' 3:7 �: (4)

� (x) is the Riemann zeta function. Not surprisingly, the statistics of EGLE is much more

complicated for sheared lenses than for isolated lenses ( = 0). Since � = 
Lz
2
Q=4 (
L

is the critical density fraction in lenses and zQ is the redshift of small sources), the shear

 is probably small in the low redshift Universe. (Turner 1980, Turner et al. 1984) For

 � 1, the caustic is a astroid shaped curve with four cusps. For a �nite source with

dimensionless radius R which crosses the optical axis, Figure 1 shows the typical lightcurves

for  = 0 (solid line), R=2 (dotted line), R (short dashed line), 5R (long dashed line),

and 10R (dot-dashed line) respectively; Figure 2 shows the corresponding cross-sections of

magni�cation. Clearly, shear is not important for  < R� 1.

In this paper, we study the statistics of EGLE for sources with small dimensionless

radius R and isolated lenses ( = 0). We generally follow the notation and conventions of

Schneider et al. (1992). We will discuss the statistics of EGLE for lenses with small shear

 elsewhere (Wang and Turner, in preparation).
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2. Basic statistics

In this section, we discuss mean and rms magni�cations, as well as integrated excess

ux (IEF) seen by a target, for �nite sources and isolated lenses (i.e. no shear).

The magni�cation of a source with dimensionless radius R is given by

�e(y;R) '

8>>>>>><
>>>>>>:

1
R
�
�
y
R

�
for y <� 5R

�p(y) =
(y2+2)

y
p

y2+4
for y >� 5R

(5)

where

�(w) =
2

�

Z 1

0
dxx

Z �

0

d�p
w2

+ x2 + 2wx cos �
: (6)

�(0) = 2, �(w > 0) can be easily integrated numerically.

Using Eq.(1), we can de�ne the half-widths of observables in the source plane. Let

us de�ne the half-width of the light curve seen by the target to be ywHM, the source's

distance to the optical axis when its magni�cation goes down to 1=2 its maximum �max.

It's straightforward to �nd:

�max =
2

R
; ywHM � y(� = 0:5�max) ' 1:145R: (7)

The mean, root mean square, and root variance magini�cations are given by

hAi (y � ywHM) '
1:5583

R
;

q
hA2i (y � ywHM) '

1:588

R
;

q
h(A� hAi)2i (y � ywHM) '

0:3

R
: (8)

We are also interested in the integrated excess ux F seen by a moving target. Let

us de�ne t = 0 to be the moment when the moving target crosses the line connecting the

source and lens. For a target moving at constant velocity v, its distance from the line
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connecting the source and lens is d = vt. Using Eq.(1), we have

F (t) �
Z t

0
dt [�e(t; R)� 1]

=

Dd

Dds

Ds�E

v

Z y

0
dy [�e(y;R)� 1] � Dd

Dds

Ds�E

v
F (y): (9)

Using Eqs.(5), we �nd

F total �
Z
1

0
dy [�e(y;R)� 1] ' 1:27 � lnR; (10)

for R <� 0:05. We de�ne the half-width of the integrated excess ux (IEF) to be ywIEF, the

source's distance from the optical axis when the IEF seen by the target is half the total

IEF, i.e., F (ywIEF) = F total=2. We �nd

ywIEF(R) ' 0:287
p
R: (11)

The corresponding mean, root mean square, and root variance magini�cations are

hAi (y � ywIEF) '
6:97p
R
;

q
hA2i (y � ywIEF) '

vuut24:28

R
ln

 
1:466p
R

!
;

q
h(A� hAi)2i (y � ywIEF) '

4:93p
R

vuut
ln

 
0:2p
R

!
: (12)

It is useful to consider only the y < 1 regime, the half-width of microlensing events.

The corresponding mean, root mean square, and root variance magini�cations are

hAi (y � 1) ' 2:236 � 0:06R;
q
hA2i (y � 1) '

s
2 ln

�
7:531

R

�
;

q
h(A� hAi)2i (y � 1) '

s
2 ln

�
0:6182

R

�
: (13)

Generally, for y >� 5R, we have

hAi (� y) '
p
y2 + 4

y
� 0:06R

y2
;

hA2i (� y) ' 1 +

2

y2

"
ln

�
10:2135

R

�
� ln

 p
y2 + 4

y

!#
: (14)
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For y ! 1, hAi=1, as required by ux conservation, and hA2i=1. However, it is not

physical to average over y from 0 to in�nity. For a given source, there is a natural cut-o�

ymax which is given by the source's distance to the nearest lens, i.e., ymax � 1=
p
� , where �

is the optical depth.

3. EGLE volume statistics for a point source

Let us consider a point source S with luminosity LS, being lensed by a lens L with

Schwartzschild radius RS (mass M) at a distance Dds. Let Q denote the magni�cation or

ux of the source seen by the target. In a narrow tube-shaped volume VSL behind the lens,

which extends from the lens and tapers o� to in�nity, Q exceeds some value q. The cross

section of the tube is

�(q) = �d2 = �

"�
Dd

Dds

�2
D2

s �
2
E

#
y2(q); (15)

where we have used Eq.(1). y(q) is the source's dimensionless distance from the optical axis

when Q equals q. Hence

VSL(q) =
Z Dd(q)

0
dDd �(q): (16)

Summing over S gives the total volume VL in which Q exceeds q for a given lens L; further

summing over L gives the total volume Vtot(> q). We use Ds = Dd +Dds for simplicity in

our calculations.

Let us consider the volume VSL(f) behind the lens in which the ux from the source

exceeds f . In the absence of magni�cation, the ux from the source is f0 = LS=(4�D
2
s ).

The magni�ed ux f = �f0. Since we are only interested in high magni�cation events, we

use y(f) ' 1=� = f0=f in calculating the cross-section �(f) of VSL(f). We �nd

�(f;Dd) =
2�RS

Dds

� Dd

D3
s

 
LS

4�f

!2

: (17)
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�(f;Dd) is maximum at Dd = Dds=2. We �nd

�max
p (f) =

8�RS

27D3
ds

 
LS

4�f

!2

: (18)

We can de�ne �max
p (f) to be the characteristic cross section of the high-ux (> f) tube.

The lens which is closest to the source has the thicknest high-ux tube behind it.

Using Eq.(17), we obtain

VSL(f) '
�RS

D2
ds

 
LS

4�f

!2

; VL(f) = 4�2nSRSDc

 
LS

4�f

!2

; (19)

where nS is the number density of sources, and Dc is the size of the system, in e�ect the

maximum distance between a lens and a source.

Let FL(f) be the volume fraction of space in which the ux from the source exceeds f

due to gravitational lensing. FL(f) should be compared with the volume fraction of space

FS(f) in which the ux from the source exceeds f due to being close to the source. We have

FL(f) = nLVL(f) =
3

2

�NS

 
f

fmin

!
�2

; FS(f) = NS

 
f

fmin

!
�3=2

;

FL(f)

FS(f)
=

3

2

�

 
f

fmin

!
�1=2

; (20)

where � is the optical depth, NS is the total number of sources, and fmin = LS=(4�D
2
c ).

Note that the volume weighted rms ux due to lensing diverges logarithmically.

The average ux from the general population of sources is nSDcLS. Let us de�ne

relative ux

f 0 =
f

nSDcLS

: (21)

Let FL(f
0
) and FS(f

0
) be the volume fractions of space in which the relative ux from the

source exceeds f 0 due to lensing and due to being close to a source respectively. We have

FL(f
0; � = 0) = nLVL(f

0; � = 0) =
�

6NSf 02
;

FL(f
0; � = 0)

FS(f 0)
=
�

2

�
3

NS

�1=2
f 0�1=2: (22)
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4. EGLE volume statistics for a �nite source

Now let us consider a source S with physical radius � and luminosity LS, being lensed

by a lens L with Schwartzschild radius RS (mass M) at a distance Dds. The tube-shaped

volume VSL(f; �) behind the lens in which the ux from the source exceeds f has �nite

length Dm
d (f; �), because of the �nite size of the source.

For a �nite source with dimensionless radius R, �max = 2=R. Let us de�ne a parameter

q0(f) which measures the maximum magni�cation of the source relative to the ux f ,

q0 �
8RSDc

�2

 
LS

4�D2
cf

!2

: (23)

The tube volume VL(f; �) has the cross-section �(f; �;Dd) which vanishes at Dd = 0,

Dm
d . To calculate the cross-section �(f; �), we need to know y(f) (see Eq.(15)), which can

be found by inverting �(y) = f=f0 numerically. �(f; �) can be written as

�(f; �;Dd) = ��2 � d2=�2 = ��2 �(q0;Dd); (24)

for given Dds. Figure 3 shows the cross-section �(f; �;Dd) with q0(f) = 4, for Dds = 0:2Dc

(solid line), 0:5Dc (long dashed line). The lens which is closest to the source has the

thickest tube of high ux behind it, as in the point source case.

To simplify the calculation for the volume fractions, let us make the approximation

�e(y;R) '

8>>>>><
>>>>>:

�p(y) for � < �max

�max elsewhere

(25)

where �p(y) is the point source magni�cation, and �max = 2=R. Eq.(25) is reasonably good

for � <� 1=R. Figure 3 shows the approximate cross-sections obtained by using Eq.(25) for

Dds = 0:2Dc (short dashed line), 0:5Dc (dot-dashed line). The dotted lines indicate Dm
d .
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This approximate cross-section always under-estimates the true cross-section; the di�erence

increases with decreasing q0(f) (large � or f), but it is negligible for our purpose.

Now let us derive the length of the tube-volume VSL(f; �). Note that f = �f0 � �maxf0.

Let f = �maxf0 at Dd(f) = Dm
d (f), i.e., the ux is equal to f on the line SL connecting the

source and lens. For given Dd, the ux decreases away from line SL, hence the volume in

which the ux exceeds f converges to a point at Dd(f) = Dm
d (f). For Dd > Dm

d , the volume

in which the ux exceeds f is zero. For a given pair of source and lens, Dm
d (f) gives the

length of the tube volume in which the ux exceeds f . To �nd Dm
d (f), we write f = �maxf0

as

Dm
d

Dc

�
Dm

d

Dc

+
Dds

Dc

�3
=

8RSDds

�2

 
LS

4�D2
cf

!2

= q0

�
Dds

Dc

�
: (26)

The above equation can be solved analytically for Dm
d (f). Let us de�ne

x � Dds

Dc

; ! � x

q
1=3
0

: (27)

We �nd

Dm
d (f)

Dds

=
1

2

8<
: [! u(!)]

3=2

2

+

s
1

2

h
1 + [! u(!)]

�3=2
i
+ u(!)� 3

2

9=
; � g(!); (28)

where

u(!) =
3

4

"
b(!) +

1

b(!)
+ 1

#
�1

; b(!) =
3!

4

2
41
2

+

s
1

4

+

�
4

3!

�3 35
2=3

: (29)

g(!) = Dm
d (f)=Dds is shown in Figure 4. Given the separation between the source and the

lens, x = Dds=Dc, the length of the tube volume behind the lens in which the ux exceeds

f is given by Dm
d (f)=Dc = x g(!), where ! = xq

�1=3
0 . The tube length is of order Dc for q0

of order 1.

The function g(!) has the following asymptotic behavior:

g(!) =

8><
>:

!�3 for ! � 1

!�3=4 for ! � 1

(30)
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Thus we have

Dm
d (f)

Dc

=

8><
>:

q0(f)=x
2

for q
1=3
0 � x

[q0(f)x]
1=4

for q
1=3
0 � x

(31)

Substitution of Eq.(28) into Eq.(16) gives VSL(f; �). Using Eq.(25) and �p(y) ' 1=y

(for high magni�cation events) in computing �(f; �), we �nd

VL(f; �) = 4�2nSRSDc

 
LS

4�f

!2

I(q0); (32)

where

I(q0) = q
1=3
0

Z q
�1=3
0

0

d!

[1 + 1=g(!)]
2 : (33)

For high ux, q0(f) � 1, I(q0) = 0:3583 q
1=3
0 . Note that I(q0) = VL(f; �)=VL(f; � = 0). In

the point source limit, q0 � 1, I(q0) = 1. We show I(q0) in Figure 5.

Given I(q0) = Aq�0 , with FL(f) and FS(f) denoting the volume fractions of space in

which the ux from the source exceeds f due to lensing and due to being close to the source

respectively, we �nd

FL(f; �) =
A

4 � 2��2� nSnLR
1+�
S L2+2�

S f�(2+2�)D1�3�
c ��2�;

FL(f; �)

FS(f)
=

3�1=2�2�A

2
1+�

nLR
1+�
S L

1=2+2�
S f�(1=2+2�)D1�3�

c ��2�: (34)

5. Possible astrophysical e�ects

For a population of sources (with number density nS) lensed by a population of lenses

(with number density nL), the physical picture for EGLE is a complex network of thin

high-ux tubes, at each knot sits a lens, and each tube line points away from a source. In

other words, a given lens has one high-ux tube coming out of it because of each source,

and a given source induces one high-ux tube behind each lens.
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To roughly survey possible astrophysical e�ects of EGLE, we construct tables of

possible source and lens populations. Table 1 lists a few types of small sources with high

luminosity. Note that the space density ns associated with transient sources such as -ray

bursts and supernovae includes the �nite lifetime factor; in other words, it is the density of

sources shining at a particular moment. Table 2 gives two possible lens populations.

In astrophysical units, we write

log(q0) = �5:62 + 0:8mbol + 2 log

 
LS

L�

!
+ log

 
ML

M�

!
� 2 log

 
�

R�

!

�3 log
 

Dc

1 kpc

!
(35)

where the minimum ux f is measured by mbol. For Galactic supernovae lensed

by stars, log(q0) = 5:38 + 0:8mbol. For QSO's (X-ray) lensed by giant black holes,

log(q0) = 4 + 0:8mbol. For gamma-ray bursts, log(q0) = 26 + 0:8mbol (lensed by stars),

and log(q0) = 34 + 0:8mbol (lensed by giant black holes). q0 measures the maximum

magni�cation of the source relative to the ux f [see Eq.(23)]. Fig.6 shows q0 versus mbol

for lensing by stars, the sources are gamma-ray bursts (solid line), QSO (X-ray) (dotted

line), QSO (UV-opt) (short dashed line), Galactic supernovae (long dashed line), neutron

stars (dot-short dashed line), hot O stars (dot-long dashed line), and hot B stars (short

dash-long dashed line) respectively.

First, let us consider the physical dimensions of the tube volume behind the lens in

which the ux exceeds f (measured by mbol). Using Eq.(28), we �nd

log

�
Dm

d

cm

�
= 21:49 + log

 
Dds

kpc

!
+ log g(!); (36)

where ! = (Dds=Dc)q
�1=3
0 . g(!) is shown in Fig.4. For q0 � 1, ! � 1 at a given Dds,

g(!) ' !�3; i.e., the length of the tube volume decreases sharply for small q0. In Fig.7(a),

we show Dm
d versus mbol for the same lenses and sources as in Fig.6 (with the same line

types), for Dds = Dc=2.
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Since the cross-section of the tube volume for a �nite source does not deviate

signi�cantly from that of a point source (see Fig.3), let us de�ne the characteristic thickness

a of the tube volume to be the maximum thickness (along the optical axis) for a point

source (see Eq.(17)). We �nd

log

�
a

cm

�
= 7:38 + 0:4mbol + log

 
LS

L�

!
+

1

2

log

 
ML

M�

!
� 3

2

log

 
Dds

kpc

!
: (37)

In Fig.7(b), we show a versus mbol for the same lenses and sources as in Fig.6 (with the

same line types), for Dds = Dc=2.

Next, we compute the volume fractions in which the ux from the source exceeds

f (measured by mbol) for the sources and lenses in Tables 1 and 2. For q0 � 1,

I(q0) = 0:3583 q
1=3
0 , we �nd

logFL = �10:55 + 8

3

log

 
LS

L�

!
+

4

3

log

 
ML

M�

!
+ log

 
nL

1pc
�3

!
+ log

 
nS

1pc
�3

!

�2

3

log

 
�

R�

!
+ 1:067mbol

log

�FL

FS

�
= �11:32 + 0:467mbol +

7

6

log

 
LS

L�

!
+
4

3

log

 
ML

M�

!
+ log

 
nL

1pc
�3

!

�2

3

log

 
�

R�

!

= �17:88 + 0:467mbol +
7

6

log

 
LS

L�

!
+ log 
L +

1

3

log

 
ML

M�

!

�2

3

log

 
�

R�

!
+ 2 log h100

= �3:88 + 0:467mbol +
7

6

log

 
LS

10
12L�

!
+

1

3

log

 
ML

M�

!
� 2

3

log

 
�

R�

!

+ log 
L + 2 log h100 (38)

For q0 � 1, I(q0) ' 1, we �nd

logFL = �8:23 + 2 log

 
LS

L�

!
+ log

 
ML

M�

!
+ log

 
nL

1pc
�3

!
+ log

 
nS

1pc
�3

!

+ log

 
Dc

1kpc

!
+ 0:8mbol
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= �14:79 + 0:8mbol + 2 log

 
LS

L�

!
+ log 
L + log

 
nS

1pc
�3

!
+ log

 
Dc

1kpc

!

+2 log h100

log

�FL

FS

�
= �9:00 + 0:2mbol +

1

2

log

 
LS

L�

!
+ log

 
ML

M�

!
+ log

 
nL

1pc
�3

!

+ log

 
Dc

1kpc

!

= �15:56 + 0:2mbol +
1

2

log

 
LS

L�

!
+ log 
L + log

 
Dc

1kpc

!
+ 2 log h100

= �3:56 + 0:2mbol +
1

2

log

 
LS

10
12L�

!
+ log

 
Dc

1Gpc

!
+ log 
L + 2 log h100

(39)

The volume fraction of space in which the ux from the source exceeds f has a

bolometric magnitude less than mbol. In Fig.8(a), we plot log(FL=FS) for lensing by stars

again, for the same sources as in Figure 6 (with the same line types). Fig.8(b) shows the

corresponding logFL. Fig.9(a) and (b) show the log(FL=FS) and log(FL) for lensing by

giant black holes for the same sources as in Figures 6-9 (with the same line types). Only

rough order of magnitude properties are used for the sources and lenses in Fig.9. The largest

e�ect comes from gamma-ray bursts lensed by stars in our simple model (zero shear).

We can convert the ux from the source into the local e�ective blackbody temperature,

T = (f=4�)1=4, where � is the Stefan-Boltzmann constant. mbol is related to T by

mbol = �10 log
�

T

0:56K

�
: (40)

Temperatures as low as a few hundred degrees will have dramatic e�ects on some dust grain

populations, for example.

Finally, we note that although the volume fractions of high ux due to lensing are

small, the corresponding absolute volumes can be large. Further, since materials move

across the high ux tubes constantly, the fraction of material a�ected by EGLE is much
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higher than the static volume fractions.

A thorough investigation of the astrophysical e�ects of EGLE will require far more

detailed and elaborate calculations which are beyond the scope of the present paper.

Y.W. is supported by the DOE and NASA under Grant NAG5-2788. E.L.T. gratefully

acknowledges support from NSF grant AST94-19400.
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Table 1: List of possible EGLE sources

� LS Dc nS

QSO (X-ray) 10
13
cm 10

12L� 1 Gpc 3� 10
�4

(Mpc)
�3

QSO (UV-opt) 10
15
cm 10

13L� 1 Gpc 3� 10
�4

(Mpc)
�3

gamma-ray bursts 10
6
-10

10
cm 10

18�20L� 1 Gpc 10
�4

(Gpc)
�3

Galactic supernovae 10
3R� 10

10L� 10kpc 10
�5

(kpc)
�3

neutron stars 10
6
cm

10
5 L� (X-ray)

10
6 L� (radio)

10pc-1kpc 1 (kpc)
�3

hot stars

8>>>>><
>>>>>:

O

B

10R�

4R�

10
5 L�

10
3 L�

1kpc

10
�8

pc
�3

10
�4

pc
�3

Table 2: List of possible EGLE lenses

ML nL

giant black holes 10
6�8M� 10

3
/(Mpc)

3

stars 0.1-1 M� 0:1/(pc)3
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Fig. 1.| Typical lightcurves for R� 1, and  = 0 (solid line), R=2 (dotted line), R (short

dashed line), 5R (long dashed line), and 10R (dot-dashed line).

Fig. 2.| Cross-sections of magni�cation for lightcurves in Figure 1.

Fig. 3.| Cross-section �(f; �;Dd) with q0(f) = 4, for Dds = 0:2Dc (solid line), 0:5Dc (long

dashed line).

Fig. 4.| g(!) = Dm
d (f)=Dds as a function of ! = Dds=Dc q

�1=3
0 (f).

Fig. 5.| I(q0) = VL(f; �)=VL(f; � = 0).

Fig. 6.| q0 versus mbol of lensing by stars for various sources.

Fig. 7.| For the same lens and sources as in Fig.6 (with the same line types), (a) Dm
d versus

mbol; (b) a versus mbol.

Fig. 8.| Lensing by stars of the same sources as in Fig.6 (with the same line types), (a)

log(FL=FS); (b) logFL corresponding to (a).

Fig. 9.| Lensing by giant black holes of the same sources as in Figure 6 (with the same line

types), (a) log(FL=FS); (b) log(FL).


